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Energetics of Nanoscale Graphitic Tubules

D. H. Robertson, D. W. Brenner and J. W. Mintmire

Naval Research Laboratory
Washington, DC 20375-5000

Abstract

Using both empirical potentials and first-principles total energy methods,

we have examined the energetics and elastic properties of all possible graphitic

tubules with radii less than 9 A. We find that the strain energy per carbon rela-

tive to an unstrained graphite sheet goes as 1/R' (where R is the tubule radius)

and is insensitive to other aspects of the lattice structure, indicating that re-

lationships derivable from continuum elastic theory persist well into the small

radius limit. We also predict that this strain energy is much smaller than that in

highly-symmetric fullerene clusters with similar radii, suggesting a possible ther-

modynamic preference for tubular structures rather than cage structures. The

empirical potentials further predict that the elastic constants along the tubule

axis generally soften with decreasing tubule radius, although with a distinct de-

pendence on helical conformation.

PACS #: 61.41.+e, 61.55.Dc, 62.20.Dc, 68.70.+w
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The discovery by Kriitschmer and Huffman' of a process for producing bulk

quantities of fullerene clusters has opened up new opportunities for producing

unique carbon-based materials. Among the possibilities are new materials based

on carbon fibers that have radii similar to that of C60 . For example, Iijima2 has

reported evidence of needle-like tubes consisting of concentric carbon fibers with

radii as small as 22 A forming at the negative end of an electrode in an appara-

tus typically used to produce fullerene clusters. If the synthesis and processing

of these fibers can be precisely controlled, they may yield new materials with

important structural and electronic properties.

Theoretical studies of these small-radii graphitic tubules have focused primar-

ily on their electronic properties. Local-density functional (LDF)3 and empirical

tight-binding electronic structure calculations 4 - 6 predict that these materials will

show conducting properties varying from metals to moderate band gap semicon-

ductors depending on their radii and helical arrangement of the carbon hexagons.

In contrast to the electronic properties, relatively little has been reported re-

garding the lattice energetics and elastic properties of these structures. Such

information may be helpful for optimizing the conditions necessary for producing

sub-nanometer radii graphitic tubules with high strength-to-weight ratios.

We have examined the energetics of a set of tubules that can be constructed

conceptually by rolling up a single sheet of graphite into a cylindrical tube with

constant radius. We report herein calculations for the energy and force constant

along the tubule axis for all such tubules with radii less than 9 A using two re-

lated many-body empirical potentials. We find that the strain energy per carbon

relative to an unstrained graphite sheet goes as 1/R2 (where R is the tubule ra-

dius) and is insensitive to other aspects of the lattice structure, indicating that

relationships derivable from continuum elastic theory persist well into the small
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radius limit. These results are further supported by first-principles LDF calcu-

lations on a series of selected tubules. We also predict that the strain energy

associated with infinitely-extended tubules is much smaller than that for highly-

symmetric icosahedral fullerene clusters with similar average radii. We find that

the force constants associated with stretching along the tubule axis decrease (i.e.,

the tubules become softer with decreasing radius). Unlike the strain energy, how-

ever, this force constant is sensitive to the helical structure of the tubule with

the dependence increasing at smaller tubule radii.

We can visualize an infinite tubule as a conformal mapping of a two-

dimensional honeycomb lattice (depicted in Fig. 1) to the surface of a cylinder

that is subject to periodic boundaries both around the cylinder and along its

axis. The proper boundary condition around the cylinder can only be satisfied

if the circumference of the cylinder maps to one of the Bravais lattice vectors of

the graphite sheet.' Thus each real lattice vector of the two-dimensional hexag-

onal lattice (the Bravais lattice for the honeycomb) defines a different way of

rolling up the sheet into a tubule. Each such lattice vector, R, can be defined

in terms of the two primitive lattice vectors R 1 and R 2 and a pair of integer

indices [nl,n 2J, such that R = n1 Ri + n2R 2 . The point group symmetry of the

honeycomb lattice will make many of these equivalent, however, so truly unique

tubules are only generated using a one-twelfth irreducible wedge of the Bravais

lattice. Within this wedge only a finite number of tubules can be constructed

with a circumference below any given value such as that shown by the dashed

line in Fig. 1.

The construction of the tubule from a conformal mapping of the graphite

sheet allows us to make additional deductions about the tubule structure. Be-

cause the primitive reciprocal lattice vectors of the hexagonal lattice (the Bravais
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lattice of the honeycomb lattice) are scalar multiples of real lattice vectors, the

tubule can be shown to be translationally periodic down the tubule axis.4 This

feature allows us to use standard supercell techniques with periodic boundary

conditions for our analysis of the lattice energetics. Each tubule can have up to

three inequivalent helical operations derived from the primitive lattice vectors of

the graphite sheet. Thus while all tubules will exhibit a helical structure, tubules

constructed by mapping directions equivalent to 0 = 0 or 300 in Fig. 1 (which

correspond to lattice translation indices of the form [n,0] and [n,n], respectively)

to the circumference of the tubule will possess a reflection plane; one of the prim-

itive lattice vectors of the graphite lattice will map to a rotation about the tubule

axis. These high-symmetry tubules will therefore be achiral. For convenience,

we will denote these high-symmetry structures based on the shapes made by the

most direct continuous path of bonds around the circumference of the tubule.

The In,0] type structures we will denote as sawtooth, and the [n,n] type struc-

tures we will denote as serpentine structures. For other values of 0, the tubules

will be chiral and have three inequivalent helical operations. By varying 0 for

tubules with similar radii, we can then ascertain which properties depend on the

helical nature of the tubules.

We calculate the strain energy and stretching force constant of each tubule

using two related many-body empirical potentials., 8 For both potentials the bind-

ing energy is given as

Ebind = E 1-[VR(rij) - Bij . VA(rij)], (1)
i j>i

where rij is the scalar distance between atoms i and j, VR(rii) and VA(rj) repre-

sent a pair-additive core-core repulsion and an attraction due to valence electrons,

respectively, and Bij is a many-body empirical bond order that couples quantities

such as bond angles and local coordination to the attractive potential. Tersoff7
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has shown that if Morse-like functions are used for the pair terms, a wide range

of structural properties of solid-state carbon can be accurately modeled using

this formalism. Furthermore, well-known trends relating bond length to total en-

ergy and stretching force constants are reproduced, suggesting that this approach

provides a reasonable starting point for predicting trends such as those studied

here.

The two potentials used are both based on Eq. (1), but vary slightly in the

form of Bij and the parameters used in the pair terms. The first empirical

potential (hereafter referred to as EP1) was introduced by TersoffT , and was fit

to the lattice constant and binding energy of a number of carbon lattices as well

as the elastic constants and vacancy formation energies of graphite and diamond.

This potential has recently been used by Hamada, et al.5 to generate tubule

structures subsequently used in tight-binding electronic structure calculations.

The second empirical potential (hereafter referred to as EP2) was developed in the

context of a reactive hydrocarbon potential,' and has been fit to similar properties

as EP1. Specific details of the two potential functions are given elsewhere.7 '8

In addition to the empirical potential calculations, we have also calculated

the electronic structure of a set of tubule structures using a first-principles,

all-electron self-consistent LDF approach originally developed to treat chain

polymers9 and recently adapted for helical symmetry.' 0 This method calculates

the total energy and electronic structure using local Gaussian-type orbitals within

a one-dimensional band structure approach. The one-electron states are Bloch

functions generated by repeated application of a screw operation, and belong to

the irreducible representations of the screw symmetry group with a dimensionless

analog of the wave vector k. Herein we used twenty-four evenly spaced points in



the one-dimensional Brillouin zone (-ir < k < 7r) and a carbon 7s3p Gaussian

basis set.

We have examined all of the 169 tubules that can be constructed for radii less

than 9 A, assuming a carbon-carbon bond distance of 1.44 A. We first generate

an initial tubule structure with periodic boundary conditions matching the min-

imum translational periodicity along the tubule axis using the above-mentioned

conformal mapping of the graphite sheet. Once these tubules are generated we

relax the constraint of conformal mapping, and minimize the energy with respect

to their configuration and periodic boundary along the tube axis for both these

empirical potentials. Using this optimized structure we next calculate a numeri-

cal second derivative of the total energy with respect to strain along the tubule

axis.

Fig. 2 depicts the strain energy per atom (relative to that of the graphite

sheet) for these tubules using optimized structures as a function of radius for

both empirical potentials. As expected, for both potentials the strain energy

decreases with larger radius, with the energy per atom approaching the limiting

graphite value shown as dashed lines in Fig. 2. The results using EPI, however,

show a larger dependence of the strain energy on tubule radii compared to the

results using EP2. Although the results depicted in Fig. 2 are for tubules with

e values ranging from 0 to 30 degrees, the strain energy appears to depend only

on the radius and thus is independent of the chirality of the tubule.

We also calculated total energies for a series of high-symmetry tubules with

9 = 30* using first-principles LDF methods. These tubules all correspond to

serpentine str.uctures of the form in,n]. The LDF electronic structure of the

[5,5] structure has been presented elsewhere. 3 We have since found the minimum

energy structure of this tubule by direct minimization of the total energy. The
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minimum energy structure is found to have a radius of 3.47 A with both types

of carbon-carbon bonds being essentially equal with lengths of 1.44 A. Using

unoptimized tubule structures generated from a conformal mapping of a graphite

sheet with 1.44 A carbon-carbon bond distance, we have calculated the total

energies of the [3,3], [4,4], [5,5], [6,6], [7,7], and [9,91 serpentine tubules. These

values are plotted as open squares in Fig. 2. The strain energy is slightly larger

than that predicted from either of the empirical potentials but shows a similar

monotonically decreasing trend with increasing radius. This increased strain

energy in the LDF results compared to the empirical potential results may arise

from the explicit treatment of r-bonding energy in the LDF approach that is not

incorporated in the empirical potentials.

Based on a continuum elastic model, Tibbetts" derived a strain energy for a

thin graphitic tubule of the general form:

irELa
3

_~ (2)
12R

where E is the elastic modulus, R is the radius of curvature, L is the length

of the cylinder, and a is a representative thickness of the order of the graphite

interplanar spacing (3.35 A). Assuming that the total number of carbons is given

by N = 2irRL/fQ, where fl is the area per carbon, we find that tite sLrain energy

per carbon is expected to be
a Eaz 3

- (3)
N 24 R2

The inset of Fig. 2 presents a log-log plot of the same tubule data presented in

linear scale in the main portion of the figure. A linear regression using the natural

logarithms of the data yields a slope of -2.0 ± 0.06 for both empirical potentials

and the LDF results, with a high correlation coefficient. Using the results of this

fit, we have drawn solid lines in the main portion of Fig. 2 showing how well



the 1/R 2 behavior fits the results for the empirical potentials. Thus we find that

the 11R 2 dependence derived from continuum ela. tic theory'1 ' 12 persists to very

small radius tubules.

Also shown in Fig. 2 are the energies per atom with respect to graphite for the

icosahedral fullerene clusters C60, C180 and C2 40 calculated using the respective

empirical potentials. These clusters represent highly-symmetric structures which

have the strain energy well distributed around the cluster. 3 For both potentials

the strain energy associated with these clusters is much larger than the infinite

tubules with comparable radii, but should reduce to the graphite limit as the

radius increases. This larger strain energy for the fullerenes reflects that while in

tubules the curvature is restricted to one dimension perpendicular to the tubule

axis, in fullerenes this curvature is present in two dimensions with respect to

the flat graphite sheet. The formation of fullerene clusters rather than tubules

during condensation may therefore be controlled by growth kinetics rather than

energetics.

We have also examined the energetics of stretching and compressing a tubule.

Fig. 3 depicts total energy results versus strain along the tubule axis for the [5,5]

serpentine tubule, in which we compare results of fully-optimized structures for a

fixed repeat length along the tubule axis using both the empirical po entials and

the LDF method. We see that both empirical methods are in good agreement

with both each other, and with the first-principles LDF results.

After this check on the reliability of the empirical potentials on calculating

this effective elastic modulus of the tubule, we have extended our empirical poten-

tial calculations on the same set of 169 tubules uszd above for strain energies to

the numerical second derivatives of the total energy with respect to strain along

the tubule axis. These results (in terms of strain energy per carbon) are depicted



in Fig. 4. Again, as the radii increase these values approach a limiting value. In

the limit of infinite radius, we can correlate these results with elastic constants

of graphite if we neglect interactions between layers. In this case our results for

the second derivative of the total energy per carbon with respect to linear strain

should just equal the product of the graphite c11 elastic constant and the spe-

cific volume per carbon, V. Using experimentally determined lattice constants

ao = 2.462 A and c, = 6.707 A, and the elastic constant cl = 1.06 TPa,14, 5 we

find V - 8.80 A' and Vcn1 z 58.2 eV/atom. This close agreement of EP2 with

experiment and excess stiffness using the EPI potential has been noted in other

calculations on graphitic systems.7, 16

For both potentials, the tubules tend to get softer with smaller radii, with

EP1 showing almost an order of magnitude greater dependence of the stiffness

of the tubule as a function of radius than EP2. Unlike the energy, however,

the stiffness of the tubules is dependent on El as well as tubule radius and this

dependence is maximized for the smaller, more strained tubules. We find that

tubules with smaller 0 are softer than those with a similar radius and larger

value of 0. Thus the two achiral sawtooth (0 = 0° ) and serpentine (0 = 30*)

tubules yield the lower and upper limits of the stiffness along the tubular axis,

respectively, for a given radius.

We have calculated the energies of optimized structures for all possible

graphitic tubules with radii less than 9 A using two different empirical poten-

tials. We find a strain energy dependence on tubule radius of 1/R 2 derived from

continuum elastic theory even down to tubule radii of - 3.5 A, that typical of

buckminsterfullerene (Cro). LDF calculations for a series of serpentine tubules

substantiate the former trend, but yield a somewhat larger strain energv. We

also predict thaxt this strain energy is much smaller than that in highly-symmetric

9)



fullerene clusters with similar radii. The empirical potentials predict that as the

radii of these tubules decrease the elastic constants along the tubule axis also

decrease (i.e. the tubules become softer as their local curvature increases). Un-

like the minimized energy, this elastic property shows a distinct dependence on

0 with the largest variations with respect to 0 occurring for small radii tubules.

For similar radii, the lower and upper bounds of the stiffness are given by the

achiral sawtooth and serpentine tubules, respectively.
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Captions

Figure 1. Irreducible wedge of the graphite lattice. Primitive lattice vectors

R1 and R 2 are depicted in inset. 0 defines the angle that the cir-

cumference vector makes with the primitive lattice vector. Dashed

line depicts 9 A cutoff for tubule structures.

Figure 2. Minimized strain energy relative to graphite (eV per carbon atom)

as a function of tubule radius for potentials EP1 and EP2. Zero

energy corresponds to the equilibrium graphite energies of -7.3995

and -7.3756 eV per atom for EP1 and EP2, respectively. The

solid lines are the 11R 2 approximation resulting from best linear

fit to log-log data given in inset. Open squares give LDF strain

energies for unoptimized serpentine structures relative to extrapo-

lated limit. Isolated symbols give corresponding strain energies per

carbon atom using EPI (circles) and EP2 (diamonds) for fullerene

cage structures C60, C180 , and C240 at the radii indicated.

Figure 3. Strain energy (eV per carbon atom) versus uniform tensile strain

in the tubule axis direction for [5,5] serpentine tubule using empir-

ical potentials EP1 (open circles), EP2 (open diamonds) and LDF

method (solid squares). Solid lines for empirical potentials are used

as a guide to the eye.

Figure 4. Numerical second derivatives of energy per carbon with respect to

uniform strain along the tubule axis direction for the potentials

EPI and EP2.
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